

1

SUPPLEMENTARY INFORMATION

Supplementary Note 1: Challenges to generate an accurate gold standard

While many areas of biological science, including RNA biology, currently lack a gold standard,

some areas of biological science have developed successful benchmarking computational tools

that produce an accurate gold standard. Examples of successful benchmarking studies include

specific problems in DNA biology, such as variant calling 14,60 or genome assembly 37. These

studies’ achievements can inaccurately portray benchmarking as a straightforward problem,

where researchers first devote effort to generate the gold standard data sets, and then make

reliable decisions based on uniform statistical methods. In contrast to DNA biology, many

problems in RNA and protein biology involve extremely complex systems, making the definition

and acquisition of gold standards extremely challenging or impossible.

Scientific problems in RNA biology, one example of such a complex system, still center around

determining differentially expressed genes from RNA-Seq data. Solving this problem involves

multiple steps: (1) alignment of short reads to the reference genome and/or transcriptome; (2)

gene and/or isoform quantification; (3) normalization of gene or isoform expression levels; and

(4) differential expression analysis. Each step of the analysis has a major impact on the final set

of differentially expressed genes and carries unique challenges, which we discuss below. The

first step of differential expression analysis is the read alignment problem—to find the correct

genomic location of tens of millions of sequencing reads derived from RNA transcripts. We

currently lack experimental techniques capable of generating an accurate gold standard of true

2

read alignments. In fact, RNA biology is an area of study where one can realistically argue that

simulated data is the only alternative available when preparing a gold standard 51.

The second step of differential expression analysis is the transcriptome quantification problem—

to identify the gene and isoform from which each read was originated, and how to use those

reads to quantify the expression levels of genes and RNA isoforms. True expression levels of

isoform and genes are impossible to measure even in a simple bacterial organism, where RNA

transcripts are not subject to alternative splicing. Human RNA transcripts undergo alternative

splicing, which presents an even more substantial challenge to obtaining a gold standard. Lack of

a gold standard for gene and isoform expression levels forces the biomedical community to adopt

alternative technologies for obtaining a gold standard. Measurements of gene and isoform

expression levels obtained by alternative technology should not be considered a true set, as they

have their own inherent biases and limitations. For example, qPCR—widely considered the gold

standard for gene expression profiling—has been shown to exhibit strong deviations of ~5-10%

across various targets 17.

The third step of differential expression analysis is the expression normalization problem—to

remove the biases and the variance introduced by experimental issues, while preserving the true

biological variation. Currently, we lack experimental techniques capable of estimating true

biological variation and differentiating variation from technical noise. Current RNA-seq analysis

methods typically standardize data between samples by scaling the number of reads in a given

library to a common value across all sequenced libraries, which is an oversimplification for

many biological applications 64. Lack of a gold standard prevents the biomedical research

3

community from assessing the performance of the tools that measure biological and technical

variance 65.

The final step of differential expression analysis is to determine differentially expressed (DE)

genes. This problem involves running a large number of hypothesis tests in parallel, one for each

gene or isoform. To properly benchmark this problem, one needs to vary multiple parameters,

including the number of replicates, the number of DE genes, and the effect sizes. Nonetheless,

the accurate gold standard cannot be obtained by current experimental procedures. The

complexity of the differential expression analysis problem prevents the level of comprehension

needed in a benchmarking study to evaluate all steps of RNA-Seq analysis. Instead,

benchmarking studies separately evaluate each step of the problem 45.

Lack of an accurate gold standard imposes a significant limitation on benchmarking studies.

Researchers planning to perform the benchmarking study face a dilemma, where, on one hand,

they do not have access to experimental techniques to generate accurate gold standard, and, on

another hand, it is known that the extreme complexity of the problem cannot be captured by

simulated data. One compromise is to enhance the simulated data with the real data or to adjust

the real data to the needs of the benchmarking study using computational techniques.

	

4

Supplementary Note 2: An example of a log file for a software tool installation and running

The log file includes any necessary dependencies and documents needed for the process of

installing the software tools and corresponding dependencies. Include any errors that occurred

while installing dependencies and the commands used to overcome these installation problems.

The log file documents the type of files that needed in order to input data into the tools and the

format of the output file.

This is the possible structure of the log file:

· Input

· Output

· Dependencies

· Commands used to install the tool

· Commands used to run the tool

· Reason the tool is impossible to install. This should include the exact error message and

document steps (if any) which were performed to resolve the problem. In case the

software developers were contacted, their suggestions should be listed here.

5

Supplementary Table 1. Summary of error correction algorithm features.

Software tool Version Underlying algorithm Data structure Types of reads accepted

BLESS 1.02 k -mer spectrum Bloom filter and hash table SE/PE

Fiona 0.2.8 k -mer spectrum Partial suffix array SE

Pollux 1.0.2 k -mer spectrum Hash table SE/PE

BFC 1 k -mer spectrum Bloom filter and hash table SE/PE

Lighter 1.1.1 k -mer spectrum Bloom filter SE/PE

Musket 1.1 k-mer spectrum Bloom filter and hash table SE/PE

Racer 1.0.1 k-mer spectrum Hash table SE/PE

Reptile 1.1 k-mer spectrum Hamming graph SE

Quake 0.3 k-mer spectrum Bit array index SE/PE

SOAPdenovo2 Corrector 2.03 k-mer spectrum Hash table SE/PE

ECHO 1.12 Multiple sequence alignment Hash table SE/PE

Coral 1.4.1 Multiple sequence alignment Hash table SE/PE

RECKONER 0.2.1 k-mer spectrum Hash table SE

SGA 0.10.15 FM-index search FM-index SE/PE

ShoRAH 1.1.0 clustering Not specified SE

KEC 1 k -mer spectrum Hash table SE

6

Supplementary Table 2. Summary of error correction algorithm features and publication details.

Software tool Organism Journal Publication Year

BLESS Human, E. coli, S. aureus Bioinformatics 2014

Fiona Human, Drosophila sp., E. coli, C. elegans Bioinformatics 2014

Pollux Human, E. coli, S. aureus, mixed genome data BMC Bioinformatics 2015

BFC Human, C. elegans Bioinformatics 2015

Lighter Human, E. coli, C. elegans Genome Biology 2014

Musket Human, E. coli, C. elegans Bioinformatics 2012

Racer Human, Drosophila sp., E. coli, C. elegans, other bacteria Bioinformatics 2013

Reptile Human, Acinetobacter sp., E. coli Bioinformatics 2010

Quake Human, E. coli Genome Biology 2010

SOAPdenovo2 Corrector Human, PhiX174, Drosophila sp., Saccharomyces cerevisiae Giga Science 2012

ECHO Human Genome Research 2012

Coral Human, E. coli, S. aureus Bioinformatics 2011

RECKONER Human, S. cerevisiae, C. elegans, M. acuminata Bioinformatics 2017

SGA Human, C. elegans, E. coli Genome Research 2012

ShoRAH RNA viral population BMC Bioinformatics 2011

KEC RNA viral population BMC Bioinformatics 2012

7

Supplementary Table 3. Summary of error correction algorithm programming language and comparable software tools.

Software tool Programming language Programs compared to in the publication

BLESS C++ SGA, QuorUM, Lighter, BFC, DecGPU, ECHO, HiTEC, Musket, Quake, Reptile

Fiona C++ Allpaths-LG,Coral,H-Shrec,ECHO,HiTEC,Quake

Pollux C Quake, SGA, BLESS, Musket, RACER

BFC C BLESS, Bloocoo, fermi2, Lighter, Musket, and SGA

Lighter C++ Quake, Musket, Bless, Soapec

Musket C++ SGA, Quake

Racer C++ Coral, HITEC, Quake, Reptile, SHREC

Reptile C++ SHREC

Quake C++, R SOAPdenovo,EULER, SHREC

SOAPdenovo2 Corrector C/C++ SOAPdevnovo1, ALLPATHS-LG

ECHO Python SA, SHREC

Coral C COMPASS 3.0, HHalign 1.5.1.1 and PSI-BLAST

RECKONER C++ Ace, BFC, BLESS, Blue, Karect, Lighter, Musket, Pollux, RACER, Trowel

SGA C++ Velvet, ABySS, SOAPdenovo, Quake, HiTEC

ShoRAH C++, Python, Perl No comparison included

KEC Java ShoRAH

	

8

Supplementary Table 4. Summary of published URLs for each software tool webpage.

Software tool Tool webpage

BLESS https://sourceforge.net/p/bless-ec/wiki/Home/

Fiona https://github.com/seqan/seqan/tree/master/apps/fiona

Pollux https://github.com/emarinier/pollux

BFC https://github.com/lh3/bfc

Lighter https://github.com/mourisl/Lighter

Musket http://musket.sourceforge.net/homepage.htm

Racer http://www.csd.uwo.ca/~ilie/RACER/

Reptile http://aluru-sun.ece.iastate.edu/doku.php?id=reptile

Quake http://www.cbcb.umd.edu/software/quake

SOAPdenovo2 Corrector http://soap.genomics.org.cn/about.html

ECHO http://uc-echo.sourceforge.net/

Coral https://www.cs.helsinki.fi/u/lmsalmel/coral/

RECKONER https://github.com/refresh-bio/RECKONER

SGA https://github.com/jts/sga

ShoRAH https://github.com/cbg-ethz/shorah

KEC http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm

9

Supplementary Table 5. Summary of software dependencies and other features.

Software tool Software dependencies Default k-mer size Read
trimming

BLESS MPICH 3.1.3, OpenMPI 1.8.4, Boost library, google spareshash, klib, KMC,
murmurhash3, zlib, pigz N/A YES

Fiona N/A N/A YES

Pollux 64 bit Unix-based OS 31 YES

BFC N/A N/A NO

Lighter N/A N/A NO

Musket N/A N/A NO

Racer OpenMP N/A NO

Reptile Perl, GNU make, C++ compiler 24 NO

Quake N/A 15 YES

SOAPdenovo2 Corrector GCC 4.4.5 or later N/A N/A

ECHO GCC 4.1 or later, Python 2.6, numpy, scipy 1/6 of read length YES

Coral N/A N/A YES

RECKONER KMC2, KMC tools N/A NO

SGA Google sparse hash library, bamtools, zlib, jemalloc (optional), pysam, ruffus 31 NO

ShoRAH Biopython, NumPy, Perl, zlib, pkg-config, GNU scientific library N/A YES

KEC FAMS; ClustalW2 or Muscle (optional) 25 NO

